Structural Studies of Metal Complexes with Sulphur-containing Bidentate Ligands. Part I. Crystal and Molecular Structures of Trimeric Bis-(dithiobenzoato)-nickel(II) and -palladium(II)

By Mario Bonamico,* Giulia Dessy, Vincenzo Fares, and Lucio Scaramuzza, Laboratorio di Teoria e Struttura Elettronica e Comportamento, Spettrochimico dei Composti di Co-ordinazione del C.N.R., Via Montorio Romano 36, 00131 Roma, Italy

The crystal and molecular structures of the title compounds have been determined by the heavy-atom method and refined by anisotropic least-squares methods to final *R* of 0.088 (Ni) and 0.051 (Pd). The nickel complex crystal-lises in space group $P2_1/n$, with Z = 6 in a unit cell of dimensions a = 5.809(10), b = 17.306(10), c = 21.392(10) Å, $\beta = 93^{\circ} 56' \pm 5'$. The palladium complex crystallises in space group $P2_1/c$, with Z = 6 in a unit cell of dimensions a = 5.943(10), b = 12.662(10), c = 28.707(10) Å, $\beta = 93^{\circ} 36' \pm 10'$.

Although the two structures are similar, both consisting of trimeric units, in which the metal co-ordination is essentially square-planar, there are differences in the metal-sulphur intratrimer interactions.

MANY nickel(II) complexes of bidentate dithio-ligands are reported in the crystallographic literature, and much information is available on the steric and structural features of different classes of complexes, the characteristics of the ligands $R-CS_2^-$, the type of Ni-S bond present, and on the correlation between molecular structure and crystal packing. By contrast, the structures of palladium(II) complexes with the same, or similar, ligands have been little investigated.

We have carried out structure determinations for several palladium(II) dithiocarboxylates in order to study the Pd-S bond in four-membered chelate rings and to bring to light any differences between the nickel-(II) and palladium(II) complexes with the same ligands. The first part of this work compares the structures of two such compounds, already reported briefly.^{1,2}

EXPERIMENTAL

The title compounds were prepared following the methods of ref. 3. Crystals were stable in air and in the X-ray beam.

FIGURE 1 [100] Projection of the bis(dithiobenzoato)nickel(11) trimer

Crystal Data, Intensity Measurements, and Corrections.— Unit-cell dimensions were determined by an improved version of Christ's method ⁴ from zero-layer Weissenberg

² M. Bonamico, G. Dessy, and V. Fares, Chem. Comm., 1969, 324.

films taken about the *a* axis, and precession photographs taken about the *b* axis, using reflections from mainly $\text{Cu-}K_{\alpha_1}$ radiation ($\lambda = 1.5406$ Å).

FIGURE 2 [100] Projection of the bis(dithiobenzoato)palladium(II) trimer

Bis(dithiobenzoato)nickel(11). $C_{14}H_{10}NiS_4$, M = 365.202, deep blue monoclinic prisms, a = 5.809(10), b = 17.306(5), c = 21.392(10) Å, $\beta = 93^{\circ} 56' \pm 10'$, U = 2.146 Å³, $D_m = 1.69$ g cm⁻³ (by flotation), Z = 6, $D_c = 1.69$ g cm⁻³; F(000) = 1.104.5. $\mu(Cu-K_{\alpha}) = 69$ cm⁻¹. Space group $P2_1/n$ from systematic absences. The intensities of 1.768 reflections above film background were collected from equi-inclination Weissenberg layers 0-5 kl, and precession layers h0-2l, to give 1.621 independent reflections (ca. $34^{\circ}/_{0}$ of those possible with Cu- K_{α} radiation).

Bis(dithiobenzoato)palladium(II). $C_{14}H_{10}PdS_4$, M = 412.892, dark red-violet monoclinic prisms, a = 5.943(10), b = 12.662(5), c = 28.707(10) Å, $\beta = 93^{\circ} 36' \pm 10'$, U = 2156 Å³, $D_m = 1.88$ g cm⁻³ (by flotation), Z = 6, $D_c = 1.909$ g cm⁻³, F(000) = 1229.3. $\mu(Cu-K_{\alpha}) = 160$ cm⁻¹. Space group $P2_1/c$ from systematic absences. The intensities of 2 665 reflections above film background were collected from equi-inclination Weissenberg layers 0-5kl, and precession layers k0-2l to give 2 442 independent reflections (*ca.* 51% of those possible with Cu-K_{\alpha} radiation).

For both structures intensity data were corrected for Lorentz and polarisation effects, and for spot extension.⁵

³ C. Furlani and M. L. Luciani, *Inorg. Chem.*, 1968, 7, 1586.
 ⁴ G. Mazzone, A. Vaciago, and M. Bonamico, *Ricerca Sci.*, 1963, 33, 1113.

⁵ D. C. Phillips, Acta Cryst., 1954, 7, 746.

¹ M. Bonamico and G. Dessy, Chem. Comm., 1968, 483.

An absorption correction was introduced in the case of the palladium complex only. First scaling of observed structure amplitudes was performed by correlating common reflections in different layers. Final scaling, with an independent scale factor for each layer, was carried out at the end of the isotropic least-squares refinement, after average isotropic temperature factor of the phenyl group atoms (B 5.0 Å² for the Ni complex and 4.5 Å² for the Pd complex). A new scaling (see earlier) and the introduction of anisotropic thermal motion for all non-hydrogen atoms brought R to 0.088(Ni) and 0.051 (Pd). The weighting scheme $w = (a + b|F_0| + c|F_0|^2)^{-1}$ was used throughout the

Τа	BLE	1
_		_

Co-ordinates $(\times 10^4)$ and temperature factors,* with standard deviations in parentheses, for the nickel compound

	x a	v/b	z c	<i>b</i> 11	b_{12}	b_{13}	b_{22}	b_{23}	b33
Ni(1)	0(0)	0(0)	0(0)	386(14)	-57(7)	-18(5)	47(2)	6(2)	14(1
Ni(2)	-539(4)	$1\ 058(2)$	1 514(l)	350(10)	-25(5)	-10(4)	46(1)	3(2)	18(1
S(1,1)	1 676(6)	— 159 (3)	960(2)	352(15)	-30(8)	-14(5)	49(2)	0(2)	16(1)
S(1,2)	-2469(6)	779(2)	443(2)	346(15)	-31(7)	-14(5)	42(2)	-2(2)	18(1)
S(2,1)	1 188(7)	887(3)	2 463(2)	365(14)	-47(8)	-14(6)	49(2)	-1(2)	18(1)
S(2,2)	-3221(7)	433(3)	2008(2)	313(14)	-5(8)	3(6)	51(2)	4(2)	23(1)
S(2,3)	1 688(7)	1939(3)	$1\ 104(2)$	430(16)	-62(8)	-31(6)	44(2)	2(2)	20(1)
S(2,4)	-2504(7)	$1 \ 354(3)$	624(2)	373(16)	-64(8)	-36(6)	54(2)	15(2)	22(1)
C(1,1)	-513(24)	-797(8)	$1 \ 062(7)$	294(50)	1(25)	21(20)	36(7)	-7(8)	19(4)
C(1,2)	-674(27)	-1256(9)	$1 \ 634(8)$	420(66)	58(31)	23(28)	32(7)	2(9)	26(6)
C(1,3)	$1\ 178(29)$	-1303(10)	2 082(8)	507(73)	-2(31)	-19(28)	37(6)	11(9)	20(5)
C(1,4)	$1\ 070(32)$	-1772(11)	2 609(8)	591(70)	24(35)	-83(28)	45(9)	26(10)	24(5)
C(1,5)	894(36)	-2225(11)	2 666(9)	692(92)	53(44)	73(34)	47(9)	21(11)	21(5)
C(1,6)	-2.795(29)	-2165(11)	2234(8)	478(83)	49(40)	24(31)	47(8)	5(10) 19(0)	21(0)
C(1, 1)	-2009(29)	-1717(9)	1 /1/(8)	000(08)	33(34)	-10(27)	28(7)	-12(9)	22(0)
C(2,1)	-1 190(23)	393(9) 40(0)	2 030(7)	220(40)	11(20) 27(20)	a(20) 7(93)	37(0)	7(0)	20(4)
C(2,2)			3201(3) 3673(7)	498(61)	-10(25)	30(25)	40(0)	9(11)	19(5)
C(2, 3) C(2, 4)	57(30)	-463(10)	4 223(8)	533(77)	-5(36)	26(32)	41(9)	-3(11)	26(6)
C(2, 4) C(2, 5)	-1984(37)	-845(12)	4304(10)	653(93)	-21(45)	113(37)	55(10)	17(12)	26(6)
C(2,6)	-3791(31)	-854(11)	3831(10)	486(77)	-69(36)	4(31)	44(8)	12(11)	32(5)
C(2,7)	-3534(28)	-452(11)	3299(8)	368(61)	26(29)	2(22)	$\hat{51}(7)$	11(8)	24(4)
C(2,8)	-374(22)	1997(8)	520(6)	344(52)	-32(24)	-10(20)	25(6)	$-\hat{6}(7)$	15(4)
C(2,9)	-229(29)	2 479(10)	-41(8)	536(72)	34(33)	-20(26)	35(7)	2(8)	18(4)
C(2,10)	1 666(26)	$2\ 964(10)$	-115(8)	387(58)	-65(31)	20(24)	38(7)	3(9)	23(5)
C(2,11)	1728(32)	3 426(10)	-659(10)	501(74)	-105(36)	64(35)	37(8)	5(11)	38(7)
C(2,12)	-112(32)	$3\ 417(9)$	-1.108(9)	596(82)	-58(34)	28(32)	27(7)	8(9)	26(6)
C(2,13)	-1982(28)	$2 \ 955(11)$	-1023(8)	441(69)	-23(35)	-23(28)	43(8)	14(11)	29(6)
C(2,14)	-2129(26)	2 511(9)	-505(7)	405(58)	18(28)	-17(23)	30(6)	19(8)	21(4)
H(1,3) †	2607	996	$2\ 024$						
H(1,4)	$2\ 372$	-1784	2940						
H(1,5)	938	-2598	$3\ 022$						
H(1, 6)	-4250	-2452	$2 \ 304$						
H(1,7)	-3974	-1710	1 390						
H(2,3)	1 741	235	3 610						
H(2,4)	1 354	480	4 555						
H(2,5)	-2183	-1122	4 707						
H(2,0)	- 5 237		3 888						
$\Pi(2, 1)$ $\Pi(9, 10)$		- 402	Z 904 915						
H(2,10) H(9,11)	2 909	2 984 3 760	210						
H(2,12)		3746							
H(2,13)	-3 283	2 946	-1 355						
H(2,14)	-3560	2 206	-447						
··(~, ·*/	-0000	<i>2</i> 200							

* For non-hydrogen atoms, exponential coefficients b_{ij} are defined by $T = \exp 10^{-4}(b_{11}k^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{13}hl + b_{23}kl)$. $\dagger B = 5$ Å².

introduction of the hydrogen atoms in the structure-factor calculation.

Determination and Refinement of the Structures.—Since Z = 6 for both structures, at least two (crystallographically equivalent) must be centrosymmetric (type A in Figures 1 and 2). The three-dimensional Patterson syntheses showed that the other four (type B) are in general positions and crystallographically equivalent. The positions of all non-hydrogen atoms were found by successive Fourier syntheses. The positional and isotropic thermal parameters of the non-hydrogen atoms (\overline{B} 3.5 Å² by Wilson's method) were refined by several cycles of 4×4 block-diagonal least-squares. At this stage R was 0.135 for the nickel and 0.103 for the palladium complex. Hydrogen atoms were then included at calculated positions (C-H 1.00 Å), with the

refinements, where a = 1.50, b = 1.00, and c = 0.002 for the Ni and a = 1.50, b = 1.00, and c = 0.0015 for the Pd complex.

Tables 1 and 2 give the final atomic parameters and their standard deviations, within the crystal chemical units. Observed and calculated structure factors, based on the final atomic parameters, are listed in Supplementary Publication No. SUP 21379 (6 pp., 1 microfiche).* Bond distances and angles, with their standard deviations, are listed in Tables 3 and 4.

Calculations.—Calculations were carried out on the IBM 7040 computer at Rome University. Intensity corrections, scaling, Wilson plots, Fourier syntheses, and interatomic

* See Notice to Authors No. 7 in J.C.S. Dalton, 1974, Index issue (items less than 10 pp. are supplied as full-size copies).

distances and angles were calculated with programs written by Domenicano and Vaciago.⁶ Programs written by Albano et al.⁷ were used for the structure-factor calculations and the least-squares refinements and a program by Spagna ⁸ for the calculation of least-squares planes. Scatter ing factors for hydrogen atoms were those of ref. 9, and neutral atomic scattering factors, corrected for anomalous dispersion in the case of nickel, palladium, and sulphur,¹⁰ from ref. 11.

trimer interactions are important and intertrimer contacts relatively unimportant. Each trimer consists of one molecule of type A linked centrosymmetrically to two molecules of type B via metal-sulphur bridges, the three molecules being virtually parallel (Figures 1 and 2).

There is a striking difference between the trimers. In the palladium trimer, both the A and B molecules are quite planar, the largest deviation from the least-squares plane being 0.13 Å, whilst in the nickel trimer the B molecule shows significant deviations from planarity: atoms Ni(2) and S(2,4) are displaced from the mean plane of B by 0.36 and 0.32 Å (see Table 5), approaching $\tilde{S}(1,1)$ and Ni(1), respectively.

DISCUSSION

Comparison of the two elementary cells shows that the values of a and β match, whilst the lengths of b and c and

Co-	ordinates ($ imes 10^4$) and	temperature	factors,* with	standard dev	viations in g	parentheses,	for the palls	adium com	pound
	x a	y/b	z c	b_{11}	b_{12}	b ₁₃	b22	b_{23}	b33
Pd(1)	0(0)	0(0)	0(0)	190(3)	5(2)	7(1)	73(1)	0(0)	9(0
Pd(2)	1 506(1)	1722(1)	1155(0)	202(2)	15(2)	11(1)	74(0)	2(0)	9(0
S(1,1)	-1159(4)	-419(2)	739(1)	201(7)	40(6)	18(2)	102(2)	5(1)	12(0
S(1,2)	2982(4)	-933(2)	363(1)	204(7)	16(6)	18(2)	89(2)	4(1)	11(0
S(2,1)	324(4)	$1\ 250(2)$	1 890(1)	222(7)	31(6)	20(2)	97(2)	3(1)	11(0
S(2,2)	4 526(4)	822(2)	1522(1)	208(7)	2(6)	24(2)	98(2)	5(1)	13(0
S(2,3)	-1418(4)	2692(2)	793(1)	241(7)	18(6)	22(2)	95(2)	0(1)	11(0
S(2,4)	2 764(4)	2 224(2)	436(1)	234(7)	36(7)	30(3)	111(2)	9(1)	13(0
C(1,1)	1 333(16)	-1.065(7)	823(3)	256(30)	61(22	11(10)	67(6)	0(4)	11(1
C(1,2)	1 947(15)	-1679(7)	1 247(3)	249(27)	104(20)	2(9)	63(5)	3(4)	10(1
C(1,3)	373(17)	-1774(8)	1 597(3)	302(32)	17(26)	10(10)	89(7)	9(5)	10(1
C(1,4)	831(19)	-2341(9)	1992(4)	356(38)	8(29	16(12)	95(8)	8(6)	13(1
C(1,5)	2 918(19)	-2853(8)	$2\ 039(4)$	359(37)	52(27	15(13)	74(7)	14(5)	16(2
C(1,6)	4 474(18)	-2772(9)	1 699(4)	246(32)	18(26)) 14(13)	79(7)	19(6)	19(2
C(1,7)	4 004(16)	-2194(8)	$1\ 296(4)$	205(28)	17(24	10(10)	87(7)	10(5)	14(1
C(2,1)	2 849(15)	650(7)	1978(3)	197(26)	3(20)) 4(9)	63(5)	6(4)	11(1
C(2,2)	$3\ 525(16)$	26(8)	2 396(3)	254(31)	36(23	17(11)	71(6)	7(5)	11(1
C(2,3)	1.994(17)	-86(8)	2 753(4)	300(33)	27(26) 18(12)	75(7)	1(5)	15(1
C(2,4)	$2\ 563(22)$	-704(9)	3 140(4)	478(45)	23(32) 16(14)	85(8)	11(6)	14(1
C(2,5)	4 661(20)	-1199(9)	3174(4)	414(41)	23(29) 5(14)	74(7)	14(6)	16(2
C(2,6)	6 127(18)	-1091(9)	2 832(4)	267(35)	70(26) 12(14)	81(7)	0(7)	23(2
C(2,7)	5 564(17)	-475(8)	2 432(4)	296(33)	36(24) 21(11)	70(6)	2(5)	15(1
C(2,8)	273(16)	2848(7)	339(3)	238(29)	70(22) 2(10)	69(6)	15(4)	11(1
C(2,9)	-352(18)	3 440(9)	85(4)	336(35)	47(27)) 8(11)	70(6)	12(5)	12(1
C(2,10	-2 404(18)	3 945(9)	144(4)	333(34)	20(27)) 32(12)	79(7)	1(6)	17(2
C(2,11	-2883(19)	4 531(9)	541(4)	312(36)	22(29)) 34(14)	88(8)	11(6)	19(2
C(2,12	-1 370(20)	4 579(10)		390(40)	21(33) 14(14)	104(9)	2(7)	14(2
C(2,13	B) 679(21)	4 064(10)	843(4)	410(42)	59(32) 20(14)	99(8)	2(6)	13(1
C(2,14	4) 1 210(18)	3 494(9)	- 447(3)	334(35)	45(29)	$) 7(11)^{-1}$	94(8)	1(5)	10(1
H(1.3	+ -1253	-1379	1546						
H(1.4	-376	-2396	2 262						
H(1.5	3 334	-3327	$2\ 350$						
H(1.6	6 095	-3172	1 751						
H(1.7	5 211	-2145	1 0 2 6						
H(2.3	j	315	2 722						
H(2.4	ý 1 390	-802	3 414						
H(2.5	ý 5134	-1680	$3\ 479$					2	
H(2.6	ý 7 759	-1486	2867						
H(2.7	6 736	400	$2\ 157$						
H(2.1)	0) — 3 633	3881	121			1			
H(2.1	1) -4468	4 965	581						1. *
H(2.1)	2) -1809	$5\ 027$	-1210						
H(2.1	3) 1863	4 112	-1117						
H(2,1	4) 2818	3 080	406	. ·					
	en e	*	See footnote (1) for Table 1.	† B = 4.5	0 Ų.	,		

TABLE 2

the space group differ $(P2_1/n$ for the Ni complex and $P2_1/c$ for the Pd complex). The fact that despite these differences similar trimers are found, though with different packing (Figures 3 and 4), suggests that intra-

It thus appears that there is a strong interaction between type A and B molecules of the nickel trimers. In fact, Ni(1)-S(2,4) and Ni(2)-S(1,1) distances are 3.11 and 2.77 Å, 0.68 and 0.34 Å greater than the sum of the 9 H. P. Hanson, F. Herman, J. D. Lea, and S. Skilmann,

A. Domenicano and A. Vaciago, unpublished work. ⁷ V. Albano, A. Domenicano, and A. Vaciago, Gazzetta, 1966, 96, 922.

* R. Spagna, unpublished work.

Acta Cryst., 1964, 17, 1040. ¹⁰ D. T. Cromer, Acta Cryst., 1965, 18, 17.

¹¹ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.

covalent radii (2.43 Å). In addition, the plane of Ni(1) and the four S atoms in type A is twisted with respect

TABLE 3

Bond distances (Å) and angles (°), with standard deviations in parentheses, for the nickel compound

(a)	Distances	
Ni(1)-	-S(1,1)	

$\begin{array}{l} Ni(1) - S(1,1) \\ Ni(1) - S(1,2) \\ Ni(1) - S(2,4) \\ Ni(2) - S(2,1) \\ Ni(2) - S(2,2) \\ Ni(2) - S(2,3) \\ Ni(2) - S(2,3) \\ Ni(2) - S(2,4) \\ Ni(2) - S(2,1) \\ Ni(2) - S(1,1) \\$	$\begin{array}{c} 2.229(4)\\ 2.227(3)\\ 3,108(5)\\ 2.221(5)\\ 2.223(5)\\ 2.218(5)\\ 2.212(5)\\ 2.776(5)\\ 1.71(1)\end{array}$	$\begin{array}{c} C(1,4)-C(1,5)\\ C(1,5)-C(1,6)\\ C(1,6)-C(1,7)\\ C(2,1)-C(2,2)\\ C(2,2)-C(2,3)\\ C(2,2)-C(2,7)\\ C(2,3)-C(2,7)\\ C(2,3)-C(2,4)\\ C(2,4)-C(2,5)\\ C(2,5)\\ $	$\begin{array}{c} 1.40(2) \\ 1.40(2) \\ 1.36(2) \\ 1.46(2) \\ 1.42(2) \\ 1.38(2) \\ 1.39(2) \\ 1.38(2) \\ 1.38(2) \\ 1.41(2) \end{array}$
$\begin{array}{l} S(1,1)-C(1,1)\\ S(1,2)-C(1,1)\\ S(2,1)-C(2,1)\\ S(2,2)-C(2,1)\\ S(2,3)-C(2,8)\\ S(2,4)-C(2,8)\\ S(2,4)-C(2,8)\\ C(1,1)-C(1,2)\\ C(1,2)-C(1,3)\\ C(1,2)-C(1,7)\\ C(1,3)-C(1,4) \end{array}$	$\begin{array}{c} 1.69(2) \\ 1.68(1) \\ 1.72(2) \\ 1.67(1) \\ 1.69(1) \\ 1.47(2) \\ 1.39(2) \\ 1.42(2) \\ 1.40(2) \end{array}$	$\begin{array}{c} C(2,6)-C(2,7)\\ C(2,6)-C(2,7)\\ C(2,8)-C(2,9)\\ C(2,9)-C(2,10)\\ C(2,9)-C(2,14)\\ C(2,10)-C(2,11)\\ C(2,11)-C(2,12)\\ C(2,12)-C(2,13)\\ C(2,13)-C(2,14) \end{array}$	$\begin{array}{c} 1.35(2)\\ 1.35(2)\\ 1.47(2)\\ 1.40(2)\\ 1.43(2)\\ 1.41(2)\\ 1.39(2)\\ 1.37(2)\\ 1.36(2) \end{array}$
(b) Angles S(1,1)-Ni(1)-S(1,2) S(2,4)-Ni(1)-S(1,1) S(2,4)-Ni(1)-S(1,1) S(2,4)-Ni(1)-S(1,2) S(2,4)-Ni(1)-S(1,2) S(2,4)-Ni(2)-S(2,2) S(2,3)-Ni(2)-S(2,4) S(1,1)-Ni(2)-S(2,1) S(1,1)-Ni(2)-S(2,2) S(1,1)-Ni(2)-S(2,3) S(1,1)-Ni(2)-S(2,3) S(1,1)-Ni(2)-S(2,4) Ni(1)-S(1,1)-C(1,1) Ni(1)-S(1,2)-C(1,1)	$\begin{array}{c} 77.7(1)\\ 83.4(1)\\ 96.6(1)\\ 86.5(1)\\ 93.5(1)\\ 77.8(2)\\ 77.4(2)\\ 95.5(2)\\ 101.2(2)\\ 93.0(1)\\ 92.0(2)\\ 85.2(6)\\ 85.8(5)\end{array}$	$\begin{array}{c} C(1,2)-C(1,3)-C(1,4)\\ C(1,3)-C(1,4)-C(1,5)\\ C(1,4)-C(1,5)-C(1,6)\\ C(1,5)-C(1,6)-C(1,7)\\ C(1,2)-C(1,7)-C(1,6)\\ S(2,1)-C(2,1)-C(2,2)\\ S(2,2)-C(2,1)-C(2,2)\\ C(2,1)-C(2,2)-C(2,3)\\ C(2,1)-C(2,2)-C(2,3)\\ C(2,1)-C(2,2)-C(2,7)\\ C(2,3)-C(2,2)-C(2,7)\\ C(2,3)-C(2,2)-C(2,7)\\ C(2,3)-C(2,2)-C(2,7)\\ C(2,3)-C(2,2)-C(2,5)\\ C(2,4)-C(2,5)-C(2,6)\\ \end{array}$	$\begin{array}{c} 121(1)\\ 119(2)\\ 121(2)\\ 119(1)\\ 122(2)\\ 127(1)\\ 123(1)\\ 117(1)\\ 123(1)\\ 119(1)\\ 120(1)\\ 120(2)\\ 121(2)\end{array}$
$\begin{array}{c} \mathrm{Art}(1) - \mathrm{St}(1, 2) - \mathrm{Ct}(1, 1) \\ \mathrm{Ni}(2) - \mathrm{St}(2, 1) - \mathrm{Ct}(2, 1) \\ \mathrm{Ni}(2) - \mathrm{St}(2, 2) - \mathrm{Ct}(2, 1) \\ \mathrm{Ni}(2) - \mathrm{St}(2, 2) - \mathrm{Ct}(2, 8) \\ \mathrm{Ni}(2) - \mathrm{St}(2, 3) - \mathrm{Ct}(2, 8) \\ \mathrm{St}(1, 1) - \mathrm{Ct}(1, 1) - \mathrm{St}(1, 2) \\ \mathrm{St}(2, 1) - \mathrm{Ct}(2, 1) - \mathrm{St}(2, 2) \\ \mathrm{St}(2, 3) - \mathrm{Ct}(2, 8) - \mathrm{St}(2, 4) \\ \mathrm{St}(1, 1) - \mathrm{Ct}(1, 1) - \mathrm{Ct}(1, 2) \\ \mathrm{St}(1, 2) - \mathrm{Ct}(1, 1) - \mathrm{Ct}(1, 2) \\ \mathrm{St}(1, 2) - \mathrm{Ct}(1, 1) - \mathrm{Ct}(1, 2) \\ \mathrm{St}(1, 2) - \mathrm{Ct}(1, 2) - \mathrm{Ct}(1, 3) \\ \mathrm{Ct}(1, 1) - \mathrm{Ct}(1, 2) - \mathrm{Ct}(1, 3) \\ \mathrm{Ct}(1, 2) - \mathrm{Ct}(2, 2) - \mathrm{Ct}(1, 3) \end{array}$	$\begin{array}{c} 36.3(5)\\ 86.2(6)\\ 85.4(5)\\ 86.0(5)\\ 85.7(5)\\ 110.7(8)\\ 110.4(8)\\ 123(1)\\ 126(1)\\ 121(1)\\ 121(2)\\ 118(2)\end{array}$	$\begin{array}{c} C(2,3) - C(2,6) - C(2,6) \\ C(2,5) - C(2,6) - C(2,7) \\ C(2,2) - C(2,7) - C(2,6) \\ S(2,3) - C(2,8) - C(2,9) \\ S(2,4) - C(2,8) - C(2,9) \\ C(2,8) - C(2,9) - C(2,10) \\ C(2,8) - C(2,9) - C(2,14) \\ C(2,10) - C(2,9) - C(2,14) \\ C(2,10) - C(2,10) - C(2,11) \\ C(2,10) - C(2,11) - C(2,12) \\ C(2,11) - C(2,12) - C(2,13) \\ C(2,12) - C(2,13) - C(2,14) \\ C(2,12) - C(2,13) - C(2,14) \\ C(2,12) - C(2,14) - C(2,13) \\ C(2,12) - C(2,14) - C(2,14) \\ C(2,14) - C(2,14) \\ C(2,14) - C(2,14) - C(2,14) \\$	$\begin{array}{c} 121(2)\\ 119(2)\\ 120(1)\\ 124(1)\\ 124(1)\\ 122(1)\\ 122(1)\\ 120(2)\\ 120(2)\\ 120(2)\\ 119(2)\\ 123(2)\\ 119(1)\\ \end{array}$

FIGURE 3 Schematic view of the unit cell of the Ni complex projected along a

TABLE 4

Bond distances (Å) and angles (°), with standard deviations in parentheses, for the palladium compound (a) Distances

(u) Distances			
$\begin{array}{c} (a) \text{Distances} \\ Pd(1)-S(1,1) \\ Pd(1)-S(1,2) \\ Pd(2)-S(2,4) \\ Pd(2)-S(2,1) \\ Pd(2)-S(2,2) \\ Pd(2)-S(2,3) \\ Pd(2)-S(2,4) \\ Pd(2)-S(2,4) \\ Pd(2)-S(1,1) \end{array}$	$\begin{array}{c} 2.332(3)\\ 2.322(2)\\ 3.455(3)\\ 2.343(3)\\ 2.322(3)\\ 2.320(3)\\ 2.327(3)\\ 3.320(3) \end{array}$	C(1,4)-C(1,5)C(1,5)-C(1,6)C(1,6)-C(1,7)C(2,1)-C(2,2)C(2,2)-C(2,3)C(2,2)-C(2,7)C(2,3)-C(2,4)C(2,4)-C(2,5)	$1.40(2) \\ 1.39(2) \\ 1.38(1) \\ 1.47(1) \\ 1.42(2) \\ 1.37(1) \\ 1.38(2) \\ 1.39(2)$
$\begin{array}{c} S(1,1)-C(1,1)\\ S(1,2)-C(1,1)\\ S(2,1)-C(2,1)\\ S(2,2)-C(2,1)\\ S(2,2)-C(2,1)\\ S(2,3)-C(2,8)\\ S(2,4)-C(2,8)\\ C(1,1)-C(1,2)\\ C(1,2)-C(1,3)\\ C(1,2)-C(1,3)\\ \end{array}$	$\begin{array}{c} 1.70(1) \\ 1.70(1) \\ 1.69(1) \\ 1.71(1) \\ 1.71(1) \\ 1.69(1) \\ 1.47(1) \\ 1.42(1) \\ 1.42(1) \end{array}$	$\begin{array}{c} C(2,5)-C(2,6)\\ C(2,6)-C(2,7)\\ C(2,8)-C(2,9)\\ C(2,9)-C(2,10)\\ C(2,9)-C(2,14)\\ C(2,10)-C(2,14)\\ C(2,10)-C(2,11)\\ C(2,11)-C(2,12)\\ C(2,12)-C(2,13)\\ C(2,12)$	$\begin{array}{c} 1.36(2)\\ 1.41(1)\\ 1.46(1)\\ 1.38(2)\\ 1.44(1)\\ 1.38(2)\\ 1.40(2)\\ 1.38($
$\begin{array}{c} C(1,2)-C(1,7)\\ C(1,3)-C(1,4)\\ (b) \text{ Angles}\\ S(1,1)-Pd(1)-S(1,2)\\ S(2,4)-Pd(1)-S(1,1)\\ S(2,4)-Pd(1)-S(1,1)'\\ S(2,4)-Pd(1)-S(1,2)\\ S(2,4)-Pd(1)-S(1,2$	$\begin{array}{c} 1.39(1) \\ 1.36(1) \\ \hline \\ 74.7(1) \\ 91.0(1) \\ 89.0(1) \\ 85.4(1) \end{array}$	C(2,13)-C(2,14) C(1,2)-C(1,3)-C(1,4) C(1,3)-C(1,4)-C(1,5) C(1,4)-C(1,5)-C(1,6) C(1,5)-C(1,6)-C(1,7)	1.37(2) $122.0(9)$ $117.2(9)$ $121.6(9)$ $121.2(9)$
$\begin{array}{l} S(2,4) - Pd(1) - S(1,2)'\\ S(2,4) - Pd(2) - S(2,2)\\ S(2,3) - Pd(2) - S(2,2)\\ S(1,3) - Pd(2) - S(2,4)\\ S(1,1) - Pd(2) - S(2,2)\\ S(1,1) - Pd(2) - S(2,3)\\ S(1,1) - Pd(2) - S(2,4) \end{array}$	$\begin{array}{c} 94.6(1) \\ 74.5(1) \\ 74.4(1) \\ 87.3(1) \\ 95.7(1) \\ 86.8(1) \\ 94.4(1) \end{array}$	$\begin{array}{c} C(1,2)-C(1,7)-C(1,6)\\ S(2,1)-C(2,1)-C(2,2)\\ S(2,2)-C(2,1)-C(2,2)\\ C(2,1)-C(2,2)-C(2,3)\\ C(2,1)-C(2,2)-C(2,3)\\ C(2,1)-C(2,2)-C(2,7)\\ C(2,3)-C(2,2)-C(2,7)\\ C(2,2)-C(2,3)-C(2,4) \end{array}$	$\begin{array}{c} 117.7(9) \\ 112.6(5) \\ 123.4(7) \\ 119.2(9) \\ 120.4(9) \\ 120.3(9) \\ 120.1(9) \end{array}$
$\begin{array}{c} Pd(1)-S(1,1)-C(1,1)\\ Pd(1)-S(1,2)-C(1,1)\\ Pd(2)-S(2,1)-C(2,1)\\ Pd(2)-S(2,2)-C(2,1)\\ Pd(2)-S(2,3)-C(2,8)\\ Pd(2)-S(2,3)-C(2,8)\\ Pd(2)-S(2,4)-C(2,8)\\ S(1,1)-C(1,1)-S(1,2)\\ S(2,2)-C(2,3)\\ S(1,2)-C(2,3)-C(2,3)\\ S(1,2)-$	$\begin{array}{c} 86.2(3)\\ 86.4(3)\\ 86.3(3)\\ 86.5(3)\\ 86.7(3)\\ 87.0(3)\\ 112.5(5)\\ \end{array}$	$\begin{array}{c} C(2,3)-C(2,4)-C(2,5)\\ C(2,4)-C(2,5)-C(2,6)\\ C(2,5)-C(2,6)-C(2,7)\\ C(2,2)-C(2,7)-C(2,6)\\ S(2,3)-C(2,8)-C(2,9)\\ S(2,4)-C(2,8)-C(2,9)\\ C(2,8)-C(2,9)-C(2,10)\\ C(2,8)-C(2,9)\\ C(2,8)-C(2,8)-C(2,9)\\ C(2,8)-C(2,8)-C(2,9)\\ C(2,8)-C(2,9)\\ C(2,8)-C(2,9)\\ C(2,8)-C(2,9)\\ C(2,8)-C(2,9)\\ C(2,8)-C(2,8)-C(2,9)\\ C(2,8)-C(2,8)-C(2,9)\\ C(2,8)-C(2,8)-C(2,9)\\ C(2,8)-C(2,8)-C(2,8)\\ C(2,8)-C(2,8)\\ C(2,8)-C(2,8)\\ C(2,8)-C(2,8)\\ C(2,8)-C($	$118.9(9) \\121.0(9) \\120.9(9) \\118.8(9) \\124.5(7) \\123.7(7) \\121.2(9) \\121.$
$\begin{array}{c} 5(2,1)-C(2,1)-S(2,2)\\ S(2,3)-C(2,8)-S(2,4)\\ S(1,1)-C(1,1)-C(1,2)\\ S(1,2)-C(1,1)-C(1,2)\\ C(1,1)-C(1,2)-C(1,3)\\ C(1,1)-C(1,2)-C(1,7)\\ C(1,3)-C(1,2)-C(1,7)\end{array}$	$112.0(3) \\111.9(5) \\122.8(7) \\124.7(7) \\119.3(8) \\120.3(8) \\120.3(8)$	$\begin{array}{c} C_{(2,6)} - C_{(2,9)} - C_{(2,14)} \\ C_{(2,10)} - C_{(2,9)} - C_{(2,14)} \\ C_{(2,9)} - C_{(2,10)} - C_{(2,11)} \\ C_{(2,10)} - C_{(2,11)} - C_{(2,12)} \\ C_{(2,11)} - C_{(2,12)} - C_{(2,13)} \\ C_{(2,12)} - C_{(2,13)} - C_{(2,14)} \\ C_{(2,9)} - C_{(2,14)} - C_{(2,13)} \end{array}$	$119.1(9) \\119.7(9) \\119.2(9) \\121.0(9) \\121.0(9) \\119.5(9) \\120.0(9)$

FIGURE 4 Schematic view of the unit cell of the Pd complex projected along a

to the rest of the molecule, thus displacing S(1,1) and Ni(2) 0.34 Å towards each other (see Figure 5). Instead, in the palladium trimers, Pd(1)-S(2,4) and Pd(2)-S(1,1)distances of 3.46 and 3.32 Å are proportionately larger, being 0.92 and 0.78 Å longer than the sum of the covalent radii (2.54 Å), and the corresponding displacement

the crystallographic axes Nickel complex Palladium complex Atoms defining the plane Deviations (Å) from the plane Atoms defining the plane Deviations (Å) from the plane Plane (a)Plane (a') BС D BA A С D 0.46879 -0.74881-0.49959 0.26865 0.37074 0.39008 0.0000 0.83127 Ni(1) 0.00 Pd(1) 0.00 S(1,1) S(1,1)0.10 0.13S(1.2)0.12 S(1.2 -0.08C(1,1) 0.02 C(1.1)-0.090.04 C(1.2)1.2 0.06 C(1.3)0.071.30.00C(1.4)0.08 14 0.05C(1.5)-0.05C(1.5)-0.08C(1.6)-0.06C(1,6) -0.03C(1,7) -0.05C(1,7) -0.02Plane (b) Plane (b') 0.44269 -0.78830-0.456683.422800.36667 0.82945 0.397533.46955 Ni(2)-0.36 Pd(2) -0.01S(2,1) S(2,2) -0.11 S(2,1)0.07 -0.04S(2.2) 0.12S(2.3) S(2,3)-0.13-0.05S(2.4)-0.32S(2,4)0.03C(2.1 -0.01C(2.1 0.09 C(2,2)0.04C(2,2)0.06 C(2,3)0.09 C(2.3)0.02 C(2.4)0.13C(2.4 -0.07C(2,5) C(2,5)0.13-0.090.06-0.05C(2,6)C(2.6)0.020.02C(2,7)C(2,7)0.09 -0.03 C(2.8 C(2.8) C(2.9 0.02C(2.9) -0.03C(2.10 0.08C(2.10)-0.01C(2,11) 0.16C(2.11)0.04 C(2, 12)C(2.12)0.190.020.12C(2,13) 0.02C(1.13 0.06 C(2.14)-0.05C(2.14)

TABLE 5 Results of least-squares planes calculations. Equations of planes, in the form Ax + By + Cz + D = 0, are referred to the crystallographic axes

of S(1,1) and Pd(2) is only 0.14 Å. In this case, the trimer bridges do not appear to have induced significant buckling or out-of-plane distortions of the molecules.

FIGURE 5 Superposition of the Ni and Pd trimers showing the out-of-plane distortion of Ni and S atoms with respect to the virtually planar Pd complex

Although Ni(1) in A should be regarded as having tetragonally distorted octahedral co-ordination, and

¹² M. Bonamico, G. Dessy, C. Mariani, A. Vaciago, and L. Zambanelli, *Acta Cryst.*, 1965, **19**, 619.

¹³ G. Peyronel and A. Pignedoli, Acta Cryst., 1967, 23, 398.

¹⁴ D. C. Fries and J. P. Fackler, Chem. Comm., 1971, 276.

¹⁵ M. Bonamico, G. Dessy, V. Fares, and L. Scaramuzza, Cryst. Struct. Comm., 1973, **2**, 201.

¹⁸ A. Chiesi Villa, A. Gaetani Manfredotti, M. Nardelli, and C. Pelizzi, *Chem. Comm.*, 1970, 1322. Ni(2) in B as being five-co-ordinated, the Ni-S bond distances are in the range 2.21-2.23 Å, typical of Ni-S bonds in square-planar nickel complexes with fourmembered chelate rings [Table 6 (refs. 12-21)]. This value, which depends on the type of ligand, and varies from 2.197(3) (mean) in bis(dithiocarbamato)nickel complexes to 2.232(5) Å (mean) in bis(dialkyl phosphorodithioato)- and bis(dialkyl- or diaryl-phosphinodithioato)nickel complexes seems not to depend on the aggregation state of the chemical units in the crystal. In compounds (V)-(VII) of Table 6 the mean Ni-S bond lengths are identical (2.212-2.217 Å) although (V)¹⁴ consists of discrete molecular units, (VI)¹⁵ shows dimeric association, with two equivalent Ni-S bridge interactions of 2.706(5) Å, and the present nickel(II) complex is trimeric. Thus, the Ni-S bridge interactions appear to influence the nickel orbitals involved in the co-ordination bonds little, if at all. This suggests that the short metalsulphur bridge is not the most important factor in

¹⁷ V. Kastalsky and J. F. McConnell, Acta Cryst., 1969, **B25**,

909. ¹⁸ J. F. McConnell and V. Kastalsky, Acta Cryst., 1967, 22, 853.

 P. E. Jones, G. B. Ansell, and L. Katz, Acta Cryst., 1969, B25, 1939.
 P. Porta, A. Sgamellotti, and N. Vinciguerra, Inorg. Chem.,

- ²⁰ P. Porta, A. Sgamellotti, and N. Vinciguerra, *Inorg. Chem.*, 1968, 7, 2625.
- ²¹ L. Gastaldi and P. Porta, Gazzetta, 1971, 641.

determining the trimer association, but that interactions between the co-planar phenyl rings also play an important role.

In bis(dithiobenzoato)palladium(II) the mean Pd-S bond length [2.328(3) Å] is ca. 0.1 Å longer than the corresponding Ni-S distance, in agreement with the values of the covalent radii for nickel and palladium,²²

The $(S_2CPh)^-$ ligand geometry is the same in both the complexes. The S-C bond lengths in each ligand do not differ significantly: values range from 1.67 to 1.72 Å $(\sigma 0.01 \text{ Å})$ for the former and from 1.68 to 1.71 Å $(\sigma 0.01 \text{ Å})$ for the latter, and agree with the literature data. The Ph-C distances (1.47-1.48 Å) indicate a partial doublebond character, which is consistent with the ligand

Table	6
-------	---

Principal mean distances (Å), with estimated standard deviations in parentheses, and angles (°) in four-membered chelate rings of nickel(11) and palladium(11) complexes with different ligand classes

(a) Nickel compounds	· · · · ·	,	•	0	
Ligand type	Compounds	Ni-S	S-Ni-S	Ni-S-C	S-C-S
S R1	$(I)^{a}$	2.201(2)	79.0	85.0	110.0
	$\begin{cases} (II) \\ (III) \\ (III) \\ c \end{cases}$	2.203(2)	79.1	84.8	110.3
s R ²	$\begin{pmatrix} (III) \\ (IV) \\ d \end{pmatrix}$	2.203(3) 2.181(3)	79.3	85.0 86.0	109.0
S R1	(V)	2.212(5)	77.0	86.6	110.0
$C - C - (R^3)$	$\begin{cases} (VI) f \\ (VII) f \end{cases}$	2.217(5)	77.0	86.6	109.0
s	((VII) \$	2.217(3)	11.0	80.0	110.0
s	(1111) 1	2 233740			
s = c = s = (R)	(111) *	2.211(4)	78.5	84.3	112.8
S. 0					S-P-S
	$\left\{ \begin{array}{c} (IX) \\ \end{array} \right\}$	2.222(2)	88.3	84.5	103
s O-R ²	(X) ³	2.233(4)	88.5	84.5	103
S、 R ¹					
P	$\begin{cases} (XI) k \\ (XII) l \end{cases}$	2.235(5)	87.7	85.5 85.0	101
s R ²		2.298(0)	88.0	80.0	101
(b) Palladium compounds					
		Pd-S	S-Pd-S	Pd-S-C	S-C-S
	(XIII) ^m	2.328(3)	74.5 °	86.3 °	112.3

^a Bis(diethyldithiocarbamato)nickel(II) (ref. 12). ^b Bis(dipropyldithiocarbamato)nickel(I) (ref. 13). ^c Bis(methylphenyldithio-carbamato)nickel(II) (J. M. Mastin, P. W. G. Newman, B. W. Robinson, and A. H. White, J.C.S. Dalton, 1972, 2233). ^d Bis(di-isopropyldithiocarbamato)nickel(II) (P. W. G. Newman and A. H. White, J.C.S. Dalton, 1972, 2239). ^e Dithiocumoato(trithio-peroxycumoato)nickel(II) (ref. 14). ^f Bis(dithiopivalato)nickel(II) (ref. 15). ^g Bis(dithiobenzoato)nickel(II) (present work). ^h Di-µ-ethylthiolato-bis(ethyl trithiocarbonato)dinickel(II) (ref. 16). ^f Bis(dimethyl dithiophosphato)nickel(II) (ref. 17). ^j Bis-(diethyl dithiophosphato)nickel(II) (ref. 18). ^k Bis(dimethyldithiophosphinato)nickel(II) (ref. 19). ^l Bis(diphenyldithiophos-phinato)nickel(II) (ref. 20). ^m Bis(dithiobenzoato)palladium(II) (present work). ⁿ (O-Ethyl phenylthiocarbamato)palladium(II) (ref. 21).

2.354(8)

S-Pd-N

70.0 °

and the S-M-S angle is increased $[74.5^{\circ} (Pd) vs. 77.5^{\circ}]$ (Ni)].

(XIV) n

The Pd-S bond length may be compared with that [2.354(8) Å] for (O-ethyl phenylthiocarbamato)palladium (II).²¹ The difference (0.026 Å) is probably significant and agrees with the greater strain in the four-membered chelate ring of the thiocarbamate (see Table 6).

planarity. All the geometrical features of the ligand are indicative of a high degree of conjugation over the whole complex molecules.

77.0 °

[4/2717 Received, 30th December, 1974]

S-C-N

112.0

22 L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., 1960, Cornell University Press, Ithaca, New York.